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In this review article we look for some of the historical reasons for the 
"identification" of the information-theoretical and thermodynamic 
entropy concepts. We also discuss the Baron-Jauch entropy concept and 
explicitly show that, for classical systems in thermodynamic equilibrium, 
there exists a very simple connection between this general definition and the 
ordinary experimental entropy. 
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1. I N T R O D U C T I O N  

R. Clausius introduced the concept of entropy in phenomenological thermo- 
dynamics when he was studying the so-called heat cycles. This was in 1865. 
Since then the word entropy has been used in many other fields, such as 
statistical mechanics, communication theory, probability theory, logic 
linguistics, and such purely mathematical fields as abstract analysis and 
number theory. In a recent, very interesting review article, Dutta expressed 
this fact in the following way(l~: '~ Successful applications of the notion of 
entropy in different fields have established the usefulness and generality of 
the concept, which was originally introduced as the basic concept of  thermo- 
dynamics and had its applications mostly in some branches of  physics, 
physical chemistry and mechanical engineering." 
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N o w  we may ask the following question: Are there any " d e e p "  con- 
nections among  the various applications o f  the entropy concept  ? Let us 
divide this question into two parts o f  special interest: 

1. Can we give a sufficiently general definition o f  entropy that  includes 
many  of  the interesting applications ? 

2. Wha t  is the connect ion between the entropy concept  used in informa- 
t ion theory and that  used, e.g., in statistical mechanics ? 

Very recently Baron and Jauch discussed these two questions and they also 
constructed an entropy function that  gives the s tandard formulas for entropy 
as defined by Bol tzmann in statistical mechanics or  by Shannon  in informa- 
t ion theory. Baron and Jauch concluded~2>: 

"As has been emphasized, the use of the word entropy should not lead to confusion 
of the mathematical concept defined here with the physical concept of thermodynamic 
entropy. The concept introduced here relates two measures, one of which is absolutely 
continuous with respect to the other and has at this stage of abstraction nothing to do 
with any particular physical system. The misleading use of the same name for mathema- 
tical and for physical entropy is well-entrenched: it is now unavoidable. We use it in the 
general sense: its special meanings should be clear from the context." 

Let us now state their definition. We suppose that  (X, ~,  p) and (X, ~ ,  v) 
are two measure spaces, i.e., X is some underlying setstructure, s is a 
~-algebra generated by subsets f rom X, and t~ and v are two measures defined 
on ~.  We also assume that/~ < v, i.e., t~ is absolutely cont inuous with respect 
to v. Then we know (3> that  there exists a unique " R a d o n - N i k o d y m  deriva- 
t i v e " f  in the function space LI(X, ~, v) such that  

t 

The Baron- Jauch  entropy function H(/~, v) is then defined by 

H(t~, v) : f x f l n ( f )  dv (2) 

It is then possible to show <2~ that  H ( - , . )  has the following properties:  

H(t, ,  ~) = 0 (3) 

H(~ ,v )  />0  if t '  < v (4) 

H(I*~ @ t*2, v, | v2) = g( t z z ,  v~) + H(lz2, v2) (5) 

where 
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i.e., jus t  the defini t ion o f  a p roduc t  measure  on X | I ' ,  the Car tes ian  p roduc t  
o f  two identical  sets. Moreover ,  we have tha t  

t~k(A) = fA f~ dye, VA ~ s k ~ {1, 2} 

where f~, k ~ {1, 2} are unique R a d o n - N i k o d y m  derivatives cor respond ing  to 
the re la t ions t*l < vl and  ~2 < v2. 

To be on safe grounds ,  it is now very interest ing to note  tha t  if we 
define " e n t r o p y "  by the condi t ions  (3)-(5) then it can be shown, (4) under  
some minor  technical  assumpt ions ,  tha t  the form (2) is the unique  answer  
(up to some a rb i t r a ry  posi t ive constant) .  So f rom now on we ta lk  abou t  the 
B a r o n - J a u c h  (B J) en t ropy  as defined above.  This can now be considered at  

least  as a par t ia l  answer  to quest ion 1 above.  I t  cannot  be complete ,  however,  
since we do  not  know how to t reat  systems with infinitely many  degrees o f  
f reedom.  Moreover ,  we will restr ict  ourselves to classical systems where we 

know tha t  there  exists a jo in t  p robab i l i ty  d i s t r ibu t ion  for  all observables .  
F r o m  a conceptua l  po in t  o f  view this is, however,  no t  an essential  loss o f  
general i ty  in the discussion.  W e  should  also not ice  tha t  the p rob lem of  giving 
a precise meaning  for  en t ropy  so tha t  it  can be appl ied  to the descr ip t ion  o f  
i rreversible processes in physics is perhaps ,  at  present ,  no t  a well-defined 
quest ion.  This is so because we do  no t  have any general  (and accepted)  
me thod  for t rea t ing  such processes.  As  a mat te r  of  fact, Ingarden,  (~) a m o n g  
many  o ther  authors ,  has s tated tha t :  

"Therefore, the principal question of irreversibility cannot be solved by any 
approximative method as the perturbation method, for instance. Also finite systems 
with a finite number of particles), even very large, cannot be approximated (for this 
purpose) by infinite systems, as is frequently done (cf. Ruelle 1969 (6)) simply since the 
difference between these systems is infinite. Infinite systems are closed and open in the 
same time, both in the topological and the physical sense of the word (the latter meaning 
isolating or non-isolation of a system), and therefore they can have a Hamiltonian and 
being irreversible, which cannot be true for any finite system. Finite systems are irrever- 
sible only if they are open (non-isolated), i.e. non-Hamiltonian, anyway on the basis of 
the present quantum (and classical) mechanics: how it will be with future mechanics we 
cannot judge or even guess now." 

I t  is p robab le  tha t  Kossakowsk i  (2,8) has found  a way o f  giving an 
ax iomat ic  fo rmula t ion  o f  the concept  o f  irreversible mot ions  and,  in general ,  
a way o f  classifying the t ime evolut ion  for general  quan tum systems. How-  
ever, we will no t  do any tho rough  s tudy o f  these quest ions in this paper ,  but  
refer to Ref. 8, where an extensive b ib l iography  can be found.  

2. E N T R O P Y  A N D  I N F O R M A T I O N  

W h a t  abou t  quest ion 2 a b o v e ?  Baron and Jauch ~2) were able to trace 
the " c o n f u s i o n "  among  physicists  concerning that  quest ion back  to a 
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"seemingly paradoxical thought experiment of Szilard ..." and they con- 
cluded that "... this experiment cannot be considered as a justification for 
such identification and there is no paradox." To see the historical steps 
behind the mentioned identification of Boltzmann's entropy concept in 
statistical mechanics and Shannon's in information theory, consider Fig. 
1. <1,2,9-1~ As we mentioned earlier, R. Clausius introduced the concept of 

Entropy - Information. 

R.CLAUSIUS 1865 

Thermodynamics. 

1 
J.C.MAXWELL 1871 

Violation of the second law. 

[ 
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i 
J.D.VAN DER WAALS 1911 
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i 
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entropy in his study on heat cycles. In thermodynamics we know this today 
in the following form: The entropy change Sc from a thermodynamic 
state A to a state B is given by 

B 

AScd~JSB-  SA = s  3Q/T (6) 

where SA and SB are the entropies for the states A and B and 8Q is the heat 
absorbed by the system under consideration at temperature T. The path of  
integration is such that each infinitesimal process (along the path) is re- 
versible. The temperature is then essentially an integrating factor making the 
differential form 8Q exact. (12~ We can then express the entropy principle or 
what is more generally known as the second law of thermodynamics in the 
following well-known way: The entropy for an isolated system can never 
decrease, i.e., 

ASc i> 0 (7) 

In 1871 J. C. Maxwell introduced the well-known "Maxwell 's demon," 
a hypothetical "be ing"  acting as a violator of the second law. (11~ In trying to 
find a microscopic interpretation of the entropy concept L. Boltzmann 
introduced the following formula for the entropy(2~: 

S~ doM k ln(W) (8) 

where k is Boltzmann's constant and W represents some probability distribu- 
tion. This expression is perhaps one of the most common formulas for 
entropy used in modern textbooks on classical and/or quantum statistical 
mechanics. For practical use of the expression (8) one has the following 
scheme (2~: 

1. For  the probability distribution W one assumes an a priori given 
expression. For classical systems this is, e.g., given by some con- 
venient choice of  measure on the phase space. 

2. One then imposes constraints on W that are in agreement with a 
fixed number of external parameters defining the thermodynamic 
state under consideration. 

3. On the basis of the assumed a priori probability distribution one finds 
an explicit expression for W. 

4. Assuming that the equilibrium states are characterized by a maximal 
entropy, one finds the corresponding probability distribution by 
calculating the extreme values for W under the assumed constraints 
on the system. 

From standard textbook arguments one then obtains, for finite quantum 
systems, the Bose-Einstein and the Fermi-Dirac distribution formulas and 
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from these the classical distribution of Boltzmannd 13~ In this context it is 
now interesting to note that the expression (8) can be deduced from (6) using 
some reasonable interpretation, in a quantum mechanical sense, of work and 
heat. (14~ The reverse process could also, of course, be done by some proper 
identification of  parameters. 

In 1872 Boltzmann introduced his well-known HB-function defined by (la~ 

H~ %f f p ln(p) dr2 (9) 

where 0 is a probability measure on the classical phase space P and dr2 is the 
ordinary Lebesgue measure on P, i.e., we have that 

p(A) /> 0 V A e P  and j [  p(f~)df~ = 1 (10) 

Using the assumption of "molecular chaos" or what is also called the 
"Stosszahlansatz" (Ref. 13, w Boltzmann was able to show that HB, as 
a function of time, never increases, i.e., 

dgB(t)/dt <_ 0 (11) 

which is the celebrated //-theorem of Boltzmann. This means that (9) is a 
good candidate for the entropy, because it really expresses the fact stated in 
the second law of thermodynamics. We also note that if we have systems 
with many particles [so that n! ~ n ~ e x p ( - n )  is valid], it is possible to show 
that HB is related to the expressions (6) and (8) in the following way: 

- k H B  = Sc = k ln(W) (12) 

at least in the case of gaseous systems with noninteracting particles. (~a) 
Under the constraint of constant energy E, i.e., 

E = const = f r  e(f2)P d~2 (13) 

it is straightforward to prove that the maximum value for the entropy S 
(where S = - k H B )  is attained when P is given by the canonical distribution 
of Gibbs, namely 

p = e x p [ ( F -  e/kT] (14) 

where F, k, and T are constants with an immediate physical interpretation. 
Let us now investigate the generality of expression (11). We assume that 

we have some "adiabat ic"  physical system, which is not in an equilibrium 
state and which is such that at time t = 0 the thermodynamic state is 
described by an ensemble for which the distribution p(F) has support only for 

E < Etot < E + 3E (15) 
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In (15) Etot is the total energy for the system under consideration and 6E 
some positive number. We now make a Riemann approximation of the 
entropy function S( t )  in the sense that 

S( t )  de=f - k H ~  = - k  lira ~. p(f~ ; t) ln[p(fl~ ; t)] Af2~ (16) 

But, by the Liouville theorem, we have that 

dp(f~; t)/dt = 0 (17) 

from which we can conclude that the expressions {p(Af~0} are constant in 
time if the subsets (zXf~} are properly chosen. We conclude that 

S( t )  = S(0) (18) 

Hence we can say that the Boltzmann HB-function cannot be the proper 
candidate for describing what we call entropy, since experience tells us, as 
expressed by the second law of thermodynamics, that 

S( t )  >1 S(O) and lim S( t )  ~ some equilibrium value (19) 

According to Gibbs, however, the Riemann sum in (16) has no meaning 
because the ergodic properties of the system have the effect of distributing 
the subsets {A~)~} over the whole phase space P. Instead, the observer of the 
system is constrained to so-called "coarse-grained" experiments. The 
physical meaning of this is that it is impossible to "resolve" the phase-space 
volume elements to an arbitrary degree. Hence we cannot give a physical 
meaning to the limit procedure in (16). Gibbs suggested that instead we 
should "coarse-grain" the phase space, i.e., divide it into a number of finite 
(i.e., the measure of  the coarse-grained parts is greater than zero but finite) 
subsets {f~k} such that (Ref. 13, w 

Q) f~  = F (20) 
k 

We can then define the probabilities {Pk} in the following way: 

= ( 1 / ~ ) (  p d ~  (21) Pk 
J a  k 

where we use the same notation for the set ~k and the measure of f2~. From 
this definition we immediately conclude that 

~ P k "  f~k = 1 (22) 
k 

We are then able to define the following coarse-grained probability density: 

po(x) %f Pk if x c f2~, etc. (23) 
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and the corresponding entropy SQ by 

Sa ae2 - k f  Oa ln(pa) d~2 = - k  ~ p~ in(pk) (24) 
~tp 

It is then a straightforward exercise to show that Sa(t) is an increasing 
function in time and that its maximal value is given when the probabilities 
{Pk} define a canonical distribution (when the mean energy is kept constant). 

This was then a success for Gibbs, but of course he and Boltzmann were 
aware of the ambiguities in these definitions. Indeed Gibbs, for example, 
stated that(2); " I t  is evident that there may be more than one quantity 
defined for finite values of degrees of freedom, which approach the same 
limiting form for infinitely many degrees of freedom. There may be, there- 
fore, and there are, other quantities which may be thought to have some 
claim to be regarded as temperature and entropy with respect to systems of 
a finite number of freedoms." 

We can now ask what sort of philosophy underlies the Gibbs, or, in 
general, any "coarse-grained" approach for describing essentially irreversible 
processes, which we indeed know exist. To let the actual physical processes 
be "dependent  on the accidental shortcomings of the observer who makes 
the measurements on the system ''(16) can be somewhat disconcerting. By 
referring to a spin-echo experiment of Hahn, (iv) it is indeed claimed in Ref. 
16 that the observers are not constrained to coarse-grained experiments and, 
" B  is therefore not permissible to base fundamental arguments in statistical 
mechanics on coarse-graining." This is essentially in the same spirit as ex- 
pressed by the Toru 'n school, as mentioned above. 

But what about the origin of the irreversibility in physical processes? 
Some authors derive this property in statistical mechanics by letting the 
number of degrees of freedom tend to infinity or by some coarse-graining 
procedure as stated above. Others claim that it is necessary to use some 
stochastic or random concepts, as in Ref. 16. It has also been suggested that 
the origin of the irreversibility can be traced back to some fundamental 
processes in elementary particle physics (T-noninvariance) or to the structure 
of the universe on a global scale. (18) These questions will be the subject for 
another study and we only remark that there exist simple, isolated, finite, 
and reversible models where we can give a meaning to "irreversibility" by 
using ideas from information theory. (19,2~ 

Thus we see that perhaps there exists some deep connection between 
observation and information of a physical system and the standard concept 
of entropy. Indeed since the days of Maxwell there has been a continuous 
study of these questions. For example, in 1911 J. D. van der Waals speculated 
on the relation between entropy change and cause and effect. (1~ In 1914, 
B. yon Smoluchowski discussed the Maxwell's demon and concluded(2): 
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"As far as our present knowledge is concerned there does not exist a per- 
manently working automatic perpetuum mobile in spite of  molecular 
fluctuations, but such a contraption could function if it were operated by 
intelligent beings in a convenient manner. . . ."  

L. Szilard then constructed a similar Gedanken experiment as that of  
Maxwell's demon, based essentially on the remark by Smoluchowski. From 
a methodological point of  view something very interesting now happened, 
which we briefly discuss. G. N. Lewis concluded in 1930 that "... Gain in 
entropy means loss of  information, nothing more.... ''~1~ At that time, 
however, the word " in format ion"  had no quantitative meaning, so Lewis' 
statement was just an idea of a possible interpretation of entropy. In his 
famous book on quantum mechanics yon Neumann ~21~ transferred the 
Gedanken experiment of  Szilard's to the measurement problem in quantum 
mechanics. F. London and E. Bauer thus claimed in 1939 that the measure- 
ment process in quantum mechanics "is  connected in an essential manner 
with the presence of a conscious observer who registers in his mind an effect, 
and that this conscious awareness is responsible for the oft-discussed, 
paradoxical ' reduction of the wave packet.'"(2~ We mention this because it is 
very interesting to see that "o ld  problems" in the theory of the measurement 
process are connected, at least historically, to the problem of giving entropy 
some "deepe r"  meaning on a microscopical level. 

Lewis' "guess"  about  the connection between " in fo rmat ion"  and 
entropy did not get a more precise meaning until C. L. Shannon published 
his paper in 1948. (22~ In this famous paper he introduced the concepts of 
" information-theoret ical"  entropy and information in essentially the following 
way. One introduces the concept of  "discrete information source" as a 
discrete random process. Now suppose that p~ is the probability of  the kth 
outcome of the random event. The entropy-information measure S, is then 
defined in the following way: 

S, ~f - k'  ~ Pk ln(p~) (25) 
k 

where k '  is some arbitrary, positive constant. The information I is then 
defined to be the difference of the information-theoretical entropy (25) for 
two given probability distributions {Pk} and {p~'} for the random event, i.e., 

I ~ f  S~(p, ..... p~) - Sz(pl', .... p , ' )  (26) 

We see that (26) is similar to the definition of the "ent ropy for a finite 
scheme" in probability theory. ~23~ In this context it is now of some interest 
to ask why Shannon used the name " e n t r o p y "  for the expression (25). 
Shannon himself answered this question: It  was a suggestion from yon 
Neumann, who in fact said, ~1~ " Y o u  should call it [(25)] entropy for two 
reasons. In the first place your uncertainty function has been used in 
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statistical mechanics under that  name, so it already has a name. In the second 
place, and more important,  no one knows what entropy really is, so in a 
debate you will always have the advantage." According to some authors 
one should take the "unif icat ion" of  these two entirely different concepts 
(thermodynamic and information-theoretical entropy) seriously and, for 
example, L. Brillouin " reso lved"  the problem of Maxwell's demon in 1951 
by using this identification. (~~ In this same reference it is also stated that, 
" T h e  proof  that they are indeed the same (and not mere analogues) has been 
dealt with extensively elsewhere and will not be treated here" (Ref. 10, p. 181). 

Baron and Jauch traced this identification back to the Szilard paradox 
and they concluded that there indeed exists no paradox. At least there is no 
clear reason from a purely historical point of  view for such an identification. 
One should really observe that this way of connecting the thermodynamic 
entropy with Shannon's expression (25) in no way is generally accepted by 
physicists. Jaynes, who has tried to find another basis for such a discussion, 
states, for example(24): 

"... It is now amply demonstrated by many workers that the 'information measure' 
introduced by Shannon has special properties of consistency and uniqueness which 
makes it the correct measure of 'amount of uncertainty' in a probability distribution. 
This is, of course, the expression (25) which, for some distributions and in some physical 
situations, has been recognized as representing entropy. However, we have to emphasize 
that 'information-theory entropy' $I and the experimental thermodynamic entropy SE 
are entirely different concepts. Our job cannot be to postulate any relation between them, 
it is rather to deduce whatever relations we can from known mathematical and physical 
facts. Confusion about the relation between entropy and probability has been one of the 
main stumbling blocks in developing a general theory of irreversibility." 

3. THE C A N O N I C A L  D I S T R I B U T I O N  

Finally let us now try to investigate the connection between information- 
theoretical entropy and the thermodynamic concept for some simple physical 
system in thermodynamic equilibrium. In doing this we will use some 
elements from Jaynes' work on information theory and statistical mechan- 
ics (2~) and also the Baron-Jauch definition of entropy (2). First we make the 
following very reasonable assumption (Ref. 24, p. 196): The equilibrium 
thermodynamic properties of  a system, as measured experimentally, agree 
with the results calculated by the usual methods of statistical mechanics, 
i.e., from the canonical or grand canonical ensemble appropriate to the 
problem. 

We then coarse-grain the phase space for the system into some number of  
cells {f2k} such that (20) is fulfilled. For the a priori measure v in the BJ 
definition of entropy, we put 

v(f~k) %t g~ (27) 
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in such a way that 

gk = fv dv = l (28) 

To calculate the probabilities {gk}, we can use the "first principle" of  
statistical mechanics, which states that equal a priori probability is assigned 
to equal volumes of phase space. Now suppose that {Pk --- prob(E~)}, where 
E~ is some characteristic energy for the phase space volume Ok, is some 
probability assignment such that it conforms to the given data, which in 
our case is taken to be the mean energy (E ) ,  i.e., 

<E> dof = pkEk (29) 
k 

The probability distribution {Pk} is associated with the "observa t ion"  and 
hence is an immediate candidate for the measure tz in the definition (2). We 
then have that 

~(f2k) a~d Pk 

with the normalization condition 

~ Pk = ~ d/x = 1 (30) 

Moreover, it is very natural to assume that if gk = 0, then we also have that 
Pk = 0. From this assumption we conclude that v(O) = 0 =>/x(O) = 0, i.e., 
t~ < v. I t  is then a straightforward exercise to calculate the Radon-Nikodym 
derivatives. One finds the result 

(dtz/dv)(f2k) = Pk/gk,  Vg~ # O, and zero otherwise (31) 

The expression (2) for the BJ entropy then gives us that 

H(t~, v) = ~ Pk ln(pk) - ~ Pk ln(g~) (32) 
k k 

where we exclude terms where gk = 0 from the last summation. We now put 
k '  = 1 in Shannon's definition of entropy (25), which implies that 

H(/,,  v) = - E Pk In(gk) - S, (32a) 
k 

To connect this with the usual experimental entropy SE we use the following 
theorem of Jaynes'  (Ref. 24, p. 197): 

Theorem. Let {Pk = prob(Ek)} be any probability assignment that 
conforms to the data in the sense that 

= pkEk (33) 
k 
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is the measured energy. Let 
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S, ae2 - ~ Pk ln(pk) (34) 
k 

be the corresponding information entropy, and S~ be the experimentally 
measured entropy for the system. The arbitrary additive constant in the 
definition of SE is chosen so that at zero temperature S~ = ln(n), where n is 
the degeneracy of the ground state. Let S~ be expressed in units such that 
Boltzmann's constant k - 1. Then 

5'1 ~< SE (35) 

with equality if and only if {Pk} is chosen as the canonical distribution, i.e., 

p~ = (I/Z) exp[--/3Ek] (36) 

where/3 is a Lagrangian multiple and Z is a normalization factor. 

Hence we conclude that in the case of a canonical distribution we have 
that 

S~ = -<ln(gk))  - H(Ix, ,) (37) 

From the theorem above we also have that 

H(Ix, v) i> - <In(gk)) - SE (38) 

Let us now investigate the extreme values for the expression (32) under the 
condition (33). introducing the Lagrangian multiplier/3', one finds that 

[In(pk) - ln(gk) + /3'Ek + In(Z)] 8pk = 0 
k 

i.e., 

Pk = (1/Z)g~ exp(-/3'Ek) 

where Z is a normalization factor defined by 

(39) 

Z d e j (  dix = ~ gk exp(--/3'Ek) (40) 
k 

This is essentially of the same form as (39) but is somewhat more general 
since this canonical distribution includes the probabilities {gk}. Using the 
expressions (39), we find, using (32), the following expression for the extreme 
value of  the BJ entropy: 

HE(Ix, v) -- ~ fi'pkEk -- In(Z) (41) 
k 

which up to some constant is equal to the experimental entropy SE. This 
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gives a connection between the entropy concept introduced by Baron and 
Jauch and that used in thermodynamics. 

4. CONCLUSIONS 

In this review article we have looked for some of the historical reasons 
for the "identification" of  the information-theoretical and thermodynamic 
entropy concepts. We have seen that in general they are different both as 
fundamental concepts and quantitative instruments for analyzing the 
properties of  physical systems. 

We have also discussed the Baron-Jauch definition of a general entropy 
concept and explicitly shown that for classical systems in thermodynamic 
equilibrium there is a very simple connection with the thermodynamic and 
experimental entropy. Moreover, we see from the arguments above that it is 
a trivial exercise to extend the formalism to quantum systems with a finite 
number of particles. One then obtains the standard expressions for the 
Einstein-Bose and the Fermi-Dirac distributions. 

For infinite classical systems the use of  the BJ definition of entropy 
turns out to be more complicated. In a recent study the present author has 
tried to find a general scheme for a discussion of "irreversible" processes 
using contractive semigroups to represent the time evolution. We have found 
that the HJ function can describe the characteristic behavior for "entropy," 
as expressed by the second law of thermodynamics, if one includes contractive 
parts in the generator for the time evolution. ~25~ Whether this has an interest- 
ing extension to the quantum dynamics for infinite systems is a question 
which we will discuss elsewhere. 
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